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Summary.

1. We describe an open source R package agTrend for analyzing regional trends of

abundance from sites with uneven sample schedules.

2. The package agTrend uses an abundance summary approach to estimate trends.

By considering abundance trends in this fashion, rather than a model parameter,

we can easily augment missing observations to calculate aggregated abundance and

trends.

3. The package uses two hierarchical models to augment missing abundance measure-

ments, while accounting for survey methodology changes and variability due to sur-

vey replication. A zero-inflated log-normal distribution is used to model abundance

(normalized for methodology changes) and a log-normal distribution to model the

observed abundance conditional on the true normalized abundance.

4. The use of agTrend is demonstrated with an analysis for regional abundance index

trends of Steller sea lions (Eumitopias jubatus) in Alaska.

5. The package will be of most use to ecologists and resource managers interested

in estimating regional trends of abundance surveys aggregated over several sites

when sites have not been surveyed at concurrent times. Hence, regional abundance

measurements cannot be directly calculated.

Key words: Abundance, Data augmentation, Hierarchical model, Population growth,

Trends
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1 Introduction

Estimating trends in growth is a central tenet in management of ecological populations.

In many instances, e.g., government agencies, it is often a legal requirement (Hovestadt

and Nowicki, 2008). Traditionally, growth trends are defined as the average change in

log-abundance over a time period of interest (Humbert et al., 2009). There are many

methods for estimating trends. The most common include: simple linear regression of

log-abundance (Caughley, 1977), state-space modeling (Holmes and Fagan, 2002; Dennis

et al., 2006; Humbert et al., 2009), and Bayesian hierarchical modeling (Sauer and Link,

2002; Link and Sauer, 2002; Ver Hoef and Frost, 2003). While, all of these methods

have benefits, they have one downfall that is a major stumbling block for large-scale

monitoring programs, trend is estimated from a slope coe�cient in the model. Thus,

estimating abundance trends of regionally aggregated sites can prove di�cult if sites are

not surveyed in unison. We propose a methodology and software to overcome this problem

by treating a trend as a summary of abundance, rather than a model parameter. To make

this method widely available to ecologists we created the add-on package agTrend for the

R statistical environment (R Development Core Team, 2013). The package is available

from GitHub (HTTP://nmml.github.io/agTrend). There are links and directions for

installation on the project website.

In large monitoring programs aggregating site-level abundance into regional abundance

can be problematic because sites may not be surveyed in the same years. Thus, site-level

abundance cannot simply be “summed up” to form regional abundance observations.

Moreover, for long-term studies, survey methods can change prohibiting direct comparison

of abundance across years. Hierarchical models can be used to estimate regional-level

trends and correct for changing methodology, however, the parameter is interpreted as

the average trend which is not the same as the trend of the regional total abundance.

Small sites are weighted equally with large sites in assessing the average trend (Ver Hoef

and Frost, 2003).

To circumvent this problem, we take an approach initially suggested by Link and Sauer

(2002), but garnering little subsequent attention, for estimating a “composite trend”

over several sites. Using Bayesian Markov Chain Monte Carlo (MCMC) methods (see

Givens and Hoeting 2005) and a hierarchical model to augment missing site data we can

summarize the posterior distribution of any function of the regional abundance, including

trends, without referring to a model parameter. In addition, Bayesian MCMC methods

have many benefits for trend analysis beyond data augmentation including the ability

to make statements such as “the probability that the regional population is declining at

more that x% is y” (Wade, 2000).

The augmentation procedure used by agTrend is based on two hierarchical processes,
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the observation process and the abundance process. The observation model accounts

for changes in survey methodology or environmental conditions over the course of the

monitoring program that a↵ect the observed abundance, say nij, for site i = 1, . . . , I, at

time tj, j = 1, . . . , tJ , The abundance process models the normalized abundance, Nij. The

normalized abundance refers to the abundance that would be observed had the surveys

been conducted under what could be termed “ideal” conditions. The normalization allows

for proper comparisons of abundance across years. In addition, if nij is an estimate of

Nij (e.g., Johnson et al. 2013), then Nij can be interpreted as a true abundance at site

i in year j if it were conducted under ideal conditions. Ver Hoef and Frost (2003) use a

similar approach to correct harbor seal (Phoca vitulina) surveys to ideal conditions. The

regional (aggregated) abundance is defined as Ñj =
P

i Nij.

If N = (N11, N12, . . . , NIJ)0 were observed in its entirety, one could directly calculate

the regional abundance, Ñ = (Ñ1, . . . , ÑJ)0, and summarize average growth with the func-

tion r(Ñ), where r(·) could be the least-squares slope of log Ñ over the time period of

interest. However, N is only partially observed, at best. Therefore, we have to account

for the uncertainty of the missing observations, changes in survey methodology, and mea-

surement error. The agTrend package uses an MCMC procedure to augment the missing

components to fully account for each source of uncertainty.

The remainder of the paper is organized as follows. In the following section we describe

the specifics of the site-level models used by agTrend to augment missing data. We also

discuss the posterior inference agTrend produces. In the last section, we illustrate the use

of agTrend with data from a monitoring program for the endangered western Steller sea

lion (Eumitopias jubatus) in Alaska.

2 Methods

2.1 Abundance augmentation models

For the site augmentation models we have chosen to use a zero-inflated log-normal model

rather than a traditional count data model, e.g., Poisson, because it is more flexible with

respect to count over- and under- dispersion. In the example case-study of Steller sea

lion trends in this paper under-dispersion may occur at large rookery sites due to the

philopatric mating behavior of sea lions. O’Hara and Kotze (2010) argue against the

use of log transformations and normal models, but, the biases of their results faded for

abundances beyond 20. Typically, monitoring programs involve abundance larger than 20.

Further, the source of bias for small abundances is induced by the “fudge factor” (O’Hara

and Kotze, 2010) necessary for transformation of abundances of zero, i.e., yij = log(nij+c),

where c  1 can be chosen arbitrarily. This problem is handled in agTrend through the
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use of a zero-inflated (ZI) version of the log-normal distribution.

The first model in the hierarchy is the observation model,

[nij | Nij,xij,�, �ij] =

(
L(x0

ij� + lnNij, �
2
ij) if Nij > 0

0 if Nij = 0
, (1)

where L(µ, �2) represents a log-normal distribution with location parameter µ and scale

parameter �2, xij are a set of adjustment covariates related to, e.g., environmental condi-

tions or survey methodology, � are the adjustment coe�cients, and Nij is the standard-

ized or true abundance. Holmes and Fagan (2002) considered corruption of the data to

be random and controlled by �

2
ij; here, we consider the fact that data can become “cor-

rupted” systematically by survey methodology changes over time. In the present version

of agTrend all �2
ij are considered known. If nij is an estimate of Nij then the estimated

standard error of nij can be given as an argument (e.g., Johnson et al. 2013). Otherwise,

agTrend sets �2
ij = 1.0E � 8 by default, so that nij ⇡ Nije

xij� .

The ZI log-normal model for Nij is given by

[Nij | �i0, �i1, ⌘ij] =

(
L(�i0 + �i1t+ ⌘ij, ⇣

�1
i ) with prob. pij

0 with prob. 1� pij
, (2)

where �i0 and �i1 are local linear coe�cients, ⌘i = (⌘i1, . . . , ⌘iJ)0 is a random walk of order

2 (RW2; Rue and Held 2005), ⇣i is the local precision parameter, and pij is the local ZI

probability. The RW2 model is used to induce autocorrelation as well as model curvature.

The RW2 process is a very smooth time-series approximating a cubic spline (Speckman

and Sun, 2003). Finally, the ZI probability is modeled via

probit(pij) = ✓i0 + ✓i1t+ ↵ij, (3)

where ✓i0 and ✓i1 are local linear trend coe�cients and ↵i = (↵i1, . . . ,↵iJ)0 is another

RW2 process.

2.2 Bayesian inference

In order to augment the missing Nij and allow for arbitrary trend summaries, we take a

Bayesian approach to inference. The MCMC algorithm that agTrend uses is summarized

in Appendix S1. The MCMC sampler draws a realization from the posterior distribution

[N,' | n,x] /
IY

i=1

JY

j=1

�
[nij | Nij,xij,�, �i]

s(i,j)[Nij | �i0, �i1, ⌘ij]
 
['], (4)

where ' = (� 0
,✓0

,�0
,⌘0

,↵0
, ⇣) is the vector of parameters, ['] is the prior distribution of

the parameters, and s(i, j) is an indicator function that equals 1 if site i was surveyed at
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time tj. The parameter prior used by agTrend is specified from the following independent

priors, whereN (µ,⌃) denotes a normal distribution (of appropriate dimension) with mean

µ and variance ⌃, and G(a, b) denotes a gamma distribution with shape a and scale b,

• [�] = N (�(0)
,Q

�1
� ),

• [�i0, �i1] = N (�(0)
i0 , Q

�1
i0 )⇥N (�(0)

i1 , Q

�1
i1 ),

• [⌘i] = N (0, ⌧�1
Q

�
RW2) (Note: RW2 process with parameter ⌧ , QRW2 is a fixed

constant matrix, see for details),

• [⌧ ] = G(a⌧ , b⌧ ),

• [⇣i] = G(a⇣ , b⇣),

• [✓i0, ✓i1] = N (✓(0)i0 , Q

�1
i0 ) ⇥N (✓(0)i1 , Q

�1
i1 ) (Note: precision parameters not necessarily

the same as �i priors),

• [↵i] = N (0,��1
Q

�
RW2),

• [�] = G(a�, b�).

We have parameterized the prior distributions using precision rather than variance because

this allows the user to set, say Qi0 = 0, to specify a flat prior distribution for �i0. By

default, agTrend sets all precision parameters to zero in normal priors for coe�cients and,

for gamma priors, a = 0.5 and b = 0.00005.

As it stands, the method described above has a built-in sample-size correction, in

a sense, for trend inference. That is to say, if nij is observed for nearly all (i, j), the

methodology correction is small, i.e., � ⇡ 0, and the observation variance becomes small,

i.e., �2
ij ⇡ 0, then V ar{r(Ñ) | n} ⇡ 0. We term this the realized trend because it is a

summary of the realized (or nearly so) Nij. It is usually desired to maintain inference

over replications of Nij as is the case with traditional regression analysis. Therefore, by

default, agTrend uses the posterior predictive distribution of N to make trend inference.

The posterior predictive distribution is the Bayesian version of the frequentist notion

of sample replication (Gelman et al., 1996). The posterior distribution for abundance is

given by

[N(p) | n,x] /
Z

[N(p)
,' | n,x] [' | n,x] d', (5)

where N

(p)
ij represents the abundance that would be realized if the abundance process

were replicated. A sample from the posterior predictive distribution of every N

(p)
ij is

accomplished within the MCMC at each iteration by using the process model (eqns. 2

and 3; see Appendix S1). For sparsely surveyed populations or populations where �2
ij > 0
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and � is uncertain, there will be little or no di↵erence between the realized and the

predicted trend inference.

3 Example: Steller sea lion population trends

To illustrate the use of the agTrend package, we analyze data from aerial survey moni-

toring program for western Steller sea lions in Alaska. These data are included with the

package, so, this example can be recreated by the reader. In addition, this example, among

others, is provided as an R demo with the package. Users can type demo(wdpsNonpups)

after loading the package to run the demo. This will run the entire MCMC augmentation

and aggregation, so, it will take a few hours depending on the platform. The example

herein does not provide detailed explanation of all the function arguments, but users can

type help(package="agTrend") in the R console window to bring up the manual files for

the package.

3.1 Data preparation

The data we are using are the counts of nonpups at rookery and haul-out sites in the

western Distinct Population Segment (wDPS; Fritz et al. 2013). These data are included

with the package and can be loaded via data(wdpsNonpups). Before we begin the analysis

we are going to subset the raw data so we use only those surveys from 1990–2012. Prior

to 1990 surveys were sparse, providing only sporadic information. In addition, we also

removed those sites that had < 2 nonzero counts over the period. For this example, we

are interested in trends within each of the six regions given in the Region column.
Prior to 2004, all surveys were conducted by counting animals in photographs taken

by hand from an airplane at oblique angles. Starting with the 2004 surveys animals were
counted from vertical medium-format photographs. The vertical high resolution photos in
the modern surveys tend to produce slightly higher counts (Fritz and Stinchcomb, 2005).
Therefore, we add an indicator, obl, for surveys using the oblique photo method. The
first few rows of the relevant data columns are shown below

site year Region count obl

ADAK/ARGONNE POINT 1992 C ALEU 0 1

ADAK/ARGONNE POINT 1994 C ALEU 0 1

ADAK/ARGONNE POINT 1996 C ALEU 141 1

ADAK/ARGONNE POINT 1998 C ALEU 43 1

ADAK/ARGONNE POINT 2000 C ALEU 8 1
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3.2 Site-level augmentation models

Now we specify the models used to augment the missing abundance at each site. Not all

of the sites have su�cient data to estimate the parameters in the full nonparametric ZI

log-normal model. The augmentation function mcmc.aggregate() in agTrend requires

the user to provide a data frame with each row representing a site and two columns giving

the models for the trend portion and the ZI portion respectively. In this analysis we used

a constant trend, i.e., �i1 = 0, for sites with 5 or fewer nonzero observations. For sites

with 6–10 nonzero observations a linear model was used, i.e., ⌘i = 0. Finally, for sites

with > 10 nonzero observations, the full nonparametric trend was used.
There were not a large number of survey years, so, we elected to use only linear or constant
models for the zero-inflation portion, ↵i = 0. Using the full nonparametric model tended
to produce overfitted zero-inflation probabilities. If the number of surveys was 1–5, we
set ✓i1 = 0. If there were not any zero observations at a site a ZI model was not used, i.e.,
pij = 1 for j = 1, . . . , J . The first few rows of the wdpsModels data frame is given below.

site trend zero.infl

ADAK/ARGONNE POINT lin lin

ADAK/CRONE ISLAND lin lin

ADAK/LAKE POINT RW2 none

ADUGAK RW2 none

AFOGNAK/TONKI CAPE lin lin

Note, the column names need to be as they are shown: the site name is the same as in

wdpsNonpups, the local trend models are titled “trend”, and the zero-inflation models

are named “zero.inf”.

3.3 Prior distributions

Although agTrend uses default prior distributions if they are left unspecified, it is not

always wise to follow that course. If there is little information for some sites, large

posterior variance of local augmentation on the log scale can lead to nonsensical results

when they are exponentiated. Occasionally, sites can have augmented abundance well

beyond reason. There are two mechanisms in agTrend to control this from happening.

The first method is to specify sensible priors for the � and � parameters. Second, an

upper limit can be specified so that abundance samples are not generated beyond the

limit.
There is no information in the wdpsNonpup data to identify the photo switch e↵ect.

There are not any overlapping surveys that used each method at the same site in the
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same year. However, there exist other data from another Steller sea lion survey in South-
east Alaska, (loaded via: data(photoCorrection)), where this e↵ect was investigated.
We used the mean and standard error of the observed photo change e↵ect to create an
informative prior for the single � parameter.

ln.photo.ratio <- log(photoCorrection$X2000OBL/photoCorrection$X2000VERT)

gamma<- list(

gamma.0=mean(ln.photo.ratio),

Q.gamma=(length(ln.photo.ratio)-1)/var(ln.photo.ratio))

Now, for the �i, we defined [�i0] = flat and [�i1] = N (0, 200) for those sites where a linear
trend was used for augmentation (“lin” and “RW2”). The chosen precision implies that
the rate of growth for any site will remain with ±20%. This is sensible for a K-selected,
long-lived species such as Steller sea lions. Note, we are using the Matrix package to take
advantage of sparse matrix algebra in the MCMC sampler.

List of 2

$ gamma:List of 2

..$ gamma.0: num -0.039

..$ Q.gamma: num 8317

$ beta :List of 2

..$ beta.0: num [1:369] 0 0 0 0 0 0 0 0 0 0 ...

..$ Q.beta:Formal class 'ddiMatrix' [package "Matrix"] with 4 slots

.. .. ..@ diag : chr "N"

.. .. ..@ Dim : int [1:2] 369 369

.. .. ..@ Dimnames:List of 2

.. .. .. ..$ : NULL

.. .. .. ..$ : NULL

.. .. ..@ x : num [1:369] 0 200 0 200 0 200 0 200 0 200 ...

We used the default priors for the remaining parameters.
We also made use of the upper bound capability in agTrend. The upper limit for each

site was defined to be 3⇥max(nij). We believed it is unlikely that realistic survey count
values would exceed this upper limit. This keeps the simulated abundances within reason.
The first few rows of the upper bound data frame are given below.

site upper

ADAK/ARGONNE POINT 423

ADAK/CRONE ISLAND 180

ADAK/LAKE POINT 3024

ADUGAK 1908

AFOGNAK/TONKI CAPE 48
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Note, the upper bound column must be labeled “upper.”

3.4 Augment counts and estimate trends

Now we can begin drawing samples from the posterior predictive trend distribution using
the mcmc.aggregate() function.

fit <- mcmc.aggregate(start=1990, end=2012, data=wdpsNonpups,

obs.formula=~obl-1, model.data=wdpsModels,

aggregation="Region", abund.name="count",

time.name="year", site.name="site",

burn=1000, iter=5000, thin=5,

prior.list=prior.list, upper=upper,

keep.site.param=TRUE, keep.site.abund=TRUE,

keep.obs.param=TRUE)

Even though we are only interested in trends from 2000–2012, we used a start time of
1990 to retain all of the predicted N

(p)
ij to examine and use later. In addition, we set all

keep.* = TRUE to retain the individual site predictions, parameters, and � samples. In
order to calculate regional trends for just 2000–2012, the updateTrend() function is used.

trend2000 <- updateTrend(x=fit, start=2000, end=2012, type="pred")

Although we do not demonstrate it here, there is also a function, newAggregation(), that

can be called if readers would like to evaluate trends for another aggregation of sites, e.g.,

we could analyze the trend for the wDPS as a whole. Also, regional abundance forecasting

may be accomplished by setting end greater than the maximum survey time.

3.5 Steller sea lion trend results

The results show that there is substantial regional variation in count trends for wDPS

Steller sea lions (Table 1 and Figure 1). In the far western portion of the population (W

ALEU) the population is declining at approximately �7% yr�1, while in some regions

in the eastern portion (W GULF and E GULF) the population is increasing at 4% yr�1

or better. In addition, populations in the C ALEU and C GULF seem to be relatively

stable with some evidence that C ALEU is declining and C GULF is increasing, though

nonsignificantly.

The posterior predictive and realized distributions of aggregated sea lion counts are

illustrated in Figure 1. In years where only a few sites are surveyed, the realized distri-

bution of counts closely matches the predictive distribution. An extreme example occurs
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in 2012 where only sites in W ALEU were surveyed, so, the predictive and realized dis-

tributions are the same in the other regions (aside from Monte Carlo di↵erences visible

in Figure 1). Examination of Figure 2 allows us to illustrate the augmenting process for

two individual sites. The Glacier haul-out site results (Figure 2a–b) illustrate application

of the ZI portion in the process model. Even though Glacier is a relatively large haul-out

and seems to be growing there is a nontrivial probability of observing nij = 0 throughout

the time period. This is due to the fact that a haul-out is populated with juveniles and

adults without pups. They are more susceptible to disturbance, natural or anthropocen-

tric. In contrast, the Marmot rookery (Figure 2c) is a large rookery site where a ZI model

was not used because it would be extremely unrealistic to observe a count of zero. The

curvature of the predictive envelope, modeled by ⌘i, indicates a decreasing rate decline

from the 1990s into the 2000s.
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Table 1: Regional trend estimates for 2000–2012. The trend

estimates are given in present growth form (i.e., � = 100(er �
1)). The columns are the posterior median, lower, and upper

95% highest probability density credible intervals of �.

Median Lower CI Upper CI

W ALEU -7.23 -9.04 -5.56

C ALEU -0.56 -1.45 0.43

E ALEU 2.39 0.92 3.94

W GULF 4.01 2.49 5.42

C GULF 0.87 -0.34 2.18

E GULF 4.51 1.63 7.58
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Figure 1: Predictive distribution of aggregated abundance and trends. The grey envelope

is the 90% highest probability density credible interval of the posterior predictive counts.

The points and error bars represent the observed counts with augmented missing values

(realized count distribution). The blue lines are the fitted least-squares predictive trend.

The black line is the median of the posterior predictive counts.
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(b) Zero−inflation at Glacier
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(c) Counts at Marmot

Figure 2: Predicted survey count at the Glacier haul-out and Marmot rookery. The dark

and light grey envelopes are 50% and 90% highest probability density credible intervals,

respectively. For plots (a) and (c) the points are the observed counts, nij, while for plot

(b), the points are indicators of positive counts. The black line is the median posterior

predictive counts for (a) and (c), while in (b) it is the median pij.
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S1: MCMC details for the R package agTrend

Supplementary information for “agTrend: An R package for estimating trends

of aggregated abundance”

Devin S. Johnson1 and Lowell Fritz

National Marine Mammal Laboratory, Alaska Fisheries Science Center
NOAA National Marine Fisheries Service,
Seattle, Washington, U.S.A.
1Email: devin.johnson@noaa.gov

S1.1 Data augmentation models

The more mathematical details of this appendix require that we reparameterize the data

augmentation models in vector form. The MCMC code in agTrend uses vectorized versions

of the model to speed computation. We add the following notation to that given in the main

portion of the paper. The dimensions are relatively starightforward to assertain and well as

the entries for the design matrices, thus, we avoid giving the details here, but Johnson et al.

(2013) provides a similar model for which a more detailed description is given.

The process model is defined by two submodels, (1) the positive count model and (2)

the zero-inflation model. To construct this model in vector form, we break the realized

abundance, Nij into a function of two random variables qij, an indicator that Nij > 0, and

zij, the log count if qij = 1. The normalized abundance is given by

Nij = qij exp{zij}. (1)

To model qij we use the probit method of Albert and Chib (1993). So, define the vector q̃i,

where

[q̃i] = N (T✓i +↵i, I),

and

• T is a J ⇥ 2 matrix with ones in the first column and sequential times from t1, . . . , tJ ,

• ✓i = (✓i0, ✓i1)0
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• [↵i] = [(↵i1, . . . ,↵iJ)
0] = N (0,��1

i Q

�1
RW2), where QRW2 is the precision weights matrix

for a random walk of order 2 (see Rue and Held 2005).

Now, defining qij to be the indicator that q̃ij > 0 implies the probability, pij, that qij = 1 is

described by the probit regression model,

probit(pij) = ✓i0 + ✓i1tj + ↵ij.

For all times, t1, . . . , tJ , we define the positive portion of abundance via the vector eqution

zi = T�i + ⌘i + �i,

where

• �i = (�i0, �i1)
0,

• [⌘i] = [(⌘i1, . . . , ⌘iJ)0] = N (0, ⌧�1
i Q

�1
RW2)

• [�i] = N (0,Q�1
�i
), where Q�i = ⇣iI.

It does not matter that we observe nij = 0 which implies Nij = 0 for some i and j, because

qij = 0 for those observations. Thus, zij is unidentafiable and the posterior distribution

will only depend only on the model structure itself and the posterior distribution of the

parameters. So, it will not a↵ect the parameter inference.

The vectorized version of the observation model is

y = X� +Mz+ ✏,

where

• y is the vector of log nij such that nij > 0 (y will be shorter than n if some nij = 0),

• z = (z01, . . . , z
0
I)

0,

• M is a matrix that selects the appropriate zij to match yij

• [✏] = N (0,Q�1
✏ ),

• Q✏ is a diagonal matrix with the appropriate ��2
ij at the entry corresponding to yij.

2



S1.2 MCMC posterior sampling

The full conditional disctributions used for MCMC sampling depend on the prior distribu-

tions selected. The agTrend package uses the following prior distributions, where N and G
denote a normal and gamma distribution respectively.

• [�] = N (�0,Q�)

• [�i] = N (�(0)
i ,Q�1

�i
)

• [⌧i] = G(a⌧ , b⌧ )

• [⇣i] = G(a⇣ , b⇣)

• [✓i] = N (✓(0)
i ,Q�1

✓i
)

• [�i] = G(a�, b�)

S1.2.1 �, �i, ⌘i, and zi updates

All of the full conditional distributions for MCMC updates of �, �i, ⌘i, and zi are multivari-

ate normal distributions of the form N (D�1
d,D�1). The D and d values for each parameter

are given in the following table.

Parameter D d

� X

0
Q✏X+Q� X

0
Q✏(y �Mz) +Q��0

�i T

0
Q�iT+Q�i

T

0
Q�i(zi � ⌘i) +Q�i

�(0)
i

⌘i Q�i + ⌧iQRW2 Q�i(zi �T�i)

zi M

0
iQ✏Mi +Q�i M

0
iQ✏(y �X�)i +Q�i(T�i + ⌘i)

The matrix Mi is the submatrix of M created by extracting those rows associated with the

ith site. Also, (y�X�)i denotes those etries of y�X� associated with the ith site. Recall

that zi is updated for all j, even in the case nij = 0.

S1.2.2 ⌧i and ⇣i updates

All ⌧i and ⇣i updates are are of the form G(c, d). The following table gives the values for c

and d for each parameter

3



Parameter c d

⌧i a⌧ + (J � 2)/2 b⌧ + ⌘0
iQRW2⌘i/2

⇣i a⇣ + J/2 b⇣ + (z�Xz�i � ⌘i)
0(z�Xz�i � ⌘i)/2

S1.2.3 q̃ij, ✓i, and ↵i updates

Updating the components of the zero-inflation portion of the model is slightly more chal-

leging than the abundance portion due to the fact qi = (qi1, . . . , qiJ)0 is partially observed.

Therefore, we break sampling of q̃ij into three parts.

case 1: nij = 0 observed

This observation implies that qij = 0 and q̃ij < 0. Thus the full conditional distribution for

sampling is [q̃ij | . . . ] = N(�1,0)(✓i0+✓i1tj +↵ij, 1), where N(l,u) refers to a truncated normal

distribution bounded below by l and above by u.

case 2: nij > 0 observed

This observation implies that qij = 1 and q̃ij > 0. Thus the full conditional distribution for

sampling is [q̃ij | . . . ] = N(0,1)(✓i0 + ✓i1tj + ↵ij, 1)

case 3: nij not observed

In this instance there is no data to condition on in the full conditional, so we follow the model

definition to update. The full conditional distribution is [q̃ij | . . . ] = N (✓i0 + ✓i1tj + ↵ij, 1).

For the current valueof q̃i the zero-inflation parameters ✓i, ↵i, and �i are updated anal-

ogous to �i, ⌘i, and ⌧i. The N (D�1
d,D�1) updates for ✓i and ↵i are given in the following

table.

Parameter D d

✓i T

0
T+Q✓i T

0(q̃i �↵i) +Q✓i✓
(0)
i

↵i I+ �iQRW2 (q̃i �T✓i)

The precision parameter is updated via [�i | . . . ] = G(a� + (J � 2)/2, b� + ↵0
iQRW2↵i/2),

analogous to ⌧i.
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S1.3 Posterior augmentation and trends

To seemlesly aggregate abundance and summarize trends agTrend samples from the posterior

distribution of the missing Nij. Using the samples drawn in the previous sections, drawing

samples for unobserved Nij are strightforward. Given qij and zij we can simply cacluate

Nij = qije
zij . (2)

This will give us the realized abundance distribution for all i and j. However, recall that

if nearly all sites are observed in years where surveys take place, �2
ij ⇡ 0, and � ⇡ 0, then

V ar[r(N)] ⇡ 0. Thus, we may want to incorporate uncertainty due to replicated survey

e↵ort. Thus, we need to incorporate the uncertainty of survey process via the posterior

predictive distribution of abundance.

The posterior predictive abundance is sampled via N (p)
ij = q(p)ij exp{z(p)ij } where

• q(p)ij is the indicator that q̃(p)ij > 0,

• [q̃
(p)
i | . . . ] = N (T✓i +↵i, I), and

• [z̃
(p)
i | . . . ] = N (T�i + ⌘i, ⇣

�1
i I).

Upon examination of the qij and zij updates, the reader can see that these are the same

samples for times and sites with missing nij. The only di↵erence is that we are sampling

N (p)
ij for all sites and times regardless of whether nij was observed. Thus, replicating the

survey e↵ort. If sampling is sparse, the inference will be similar.

After augmentation/prediction, the abundances are aggregated from sites in to regional

abundance Ñj =
P

i N
(p)
ij . From this point the log abundance is calculated, z̃ = log Ñ.

Finally, the trend is calculated as

r = r(Ñ) = (T0
T)�1

T

0
z̃, (3)

i.e., the least-squares summary of average change in log abundance. After the MCMC

algorithm is complete, trend inference is calculated as the median r and 95% HPD CI is also

calculated.
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